Porous Au-embedded WO3 Nanowire Structure for Efficient Detection of CH4 and H2S
نویسندگان
چکیده
منابع مشابه
Porous Au-embedded WO3 Nanowire Structure for Efficient Detection of CH4 and H2S
We developed a facile method to fabricate highly porous Au-embedded WO3 nanowire structures for efficient sensing of CH4 and H2S gases. Highly porous single-wall carbon nanotubes were used as template to fabricate WO3 nanowire structures with high porosity. Gold nanoparticles were decorated on the tungsten nanowires by dipping in HAuCl4 solution, followed by oxidation. The surface morphology, s...
متن کاملnano-rods zno as an efficient catalyst for the synthesis of chromene phosphonates, direct amidation and formylation of amines
چکیده ندارد.
Photocatalytic degradation of an organophosphorus compound by porous Au- and WO3- modified TiO2
متن کامل
Au nanowire-on-film SERRS sensor for ultrasensitive Hg2+ detection.
We report an ultrasensitive and selective single nanowire-on-film (SNOF) surface-enhanced resonance Raman scattering (SERRS) sensor for Hg(2+) detection based on structure-switching double stranded DNAs (dsDNAs). Binding of Hg(2+) induces conformational changes of the dsDNAs and let a Raman reporter get close to the SNOF structure, thereby turning on SERRS signal. The well-defined SNOF structur...
متن کاملBiochars as Potential Adsorbers of CH4, CO2 and H2S
Methane gas, as one of the major biogases, is a potential source of renewable energy for power production. Biochar can be readily used to purify biogas contaminants such as H2S and CO2. This study assessed the adsorption of CH4, H2S, and CO2 onto four different types of biochars. The adsorption dynamics of biochars were investigated in a fixed-bed column, by determining the breakthrough curves ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2015
ISSN: 2045-2322
DOI: 10.1038/srep11040